Уважаемые партнеры! Приглашаем вас принять участие в маркетинговой акции Yealink «Бонус на связи!». Период действия акции: 01 декабря 2025 г. – 31 декабря 2025 г. – За закупку IP-телефонов и гарнитур Yealink вам будут начисляться бонусы. – Для каждой модели предусмотрен ...
Уважаемые партнеры! Treolan предлагает вам принять участие в программе по продукции Netac. Совершая покупку продукции Netac в Treolan, вы можете получить подарочные сертификаты федеральных сетей на ваш выбор. Для участия в программе необходимо зарегистрироваться
Предновогодняя распродажа Datalogic стартовала! Специальное предложение до конца 2025 года — на ручные и стационарные сканеры Datalogic действуют эксклюзивные цены! Прямо сейчас к оперативной отгрузке со склада PROWAY доступны: Ручной беспроводной сканер Datalogic QuickScan QBT2500-BK-BTK1 Данная ...
Получите кешбэк 5% на закупку новых моделей корпусов CBR до 8 декабря: CBR V201 — 260 x 165 x 353 мм, 2×HDD + 2×SSD, видеокарта до 250 мм, 2×USB 2.0; CBR V203 — 260 x 165 x 353 мм, 2×HDD + 2×SSD, видеокарта до 250 мм, USB 2.0, USB 3.0; CBR V205 — 260 x 165 x ...
Уважаемые партнеры! Приглашаем вас принять участие в промопрограмме по продукции НИИ «Масштаб». Покупая хотя бы одну лицензию виртуализации, а также любые другие решения НИИ Масштаб в Treolan, вы получаете подарочный сертификат на ваш выбор. Для участия в программе необходимо зарегистрироваться
Сейчас ученые разрабатывают модели, позволяющие роботам учиться на своем опыте. Учитывайте это, потому что глубокое обучение приведет к значительным усовершенствованиям, пишет на портале InformationWeek вице-президент Canonical Group по устройствам и Интернету вещей Том Кеннинг. В конце марта ученые из Google, Принстонского и Колумбийского университетов и Массачусетского технологического института продемонстрировали робота TossingBot, который может учиться хватать и бросать случайные предметы вроде бананов или шариков для пинг-понга в коробки, находящиеся за пределами запрограммированной дальности, и повышать производительность посредством самообучения. «Данный робот, как и многие другие, призван справляться с динамикой неструктурированного мира, — отметил студент-исследователь Google Энди Цзэн. — Но могут ли роботы не просто справляться с динамикой, а учиться использовать ее с выгодой для себя, развивая „интуитивное понимание“ физического мира, которое позволит им более эффективно решать поставленные задачи?». Благодаря глубокому обучению, продолжил он, «наши роботы могут обучаться на опыте вместо того, чтобы полагаться на проектирование действий вручную для каждого конкретного случая». Анонс TossingBot представляет интерес, потому что иллюстрирует, в какой мере глубокое обучение способно совершенствовать действия робота в реальном мире, далеко выходящие за пределы игры. Становясь все более сложной, робототехника готовится преобразовать различные отрасли, включая ... читать далее.